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Abstract—This letter presents a prototype discriminative learn-
ing (PDL) method for image set classification. We aim to simulta-
neously learn prototypes and a linear discriminative projection to
drive that in the target subspace each image set can be discrim-
inated with its nearest neighbor prototype. To reveal the unseen
appearance variations implicitly in an image set, the prototypes
are actually “virtual,” which do not certainly appear in the set
but are searched in the corresponding affine hull. Moreover, to en-
hance the stability and robustness of the learned target subspace,
an orthogonality constraint is imposed on the projection. Thus,
to optimize the prototypes and the projection jointly, we design
a specific gradient descent mechanism by updating the projec-
tion on Stiefel manifold and the prototypes in Euclidean space in
an alternative optimization manner. Experimental results on four
challenging databases demonstrate the superiority of the proposed
PDL method.

Index Terms—Discriminative learning, image set classification,
prototype learning.

I. INTRODUCTION

S INCE a set of images can provide more information to
more effectively describe the subjects of interest than a

single image, there has been a growing research focus on im-
age set classification [1]–[9]. However, multiple images usually
incorporate dramatically large variations in pose, illumination,
expression, etc., which poses a new challenge on modeling the
useful information contained implicitly in an image set.

In recent years, a simple but efficient affine hull model [1] is
proposed to model the image set. The affine hull is a general ge-
ometric model containing all the affine combinations of sample
images in the set, which can account for the unseen appearance,
possible data variation, and further the semantic relationship
between sample images. Nevertheless, there are some fatal lim-
itations: 1) The affine hull may be overlarge. An illustration of
such case is shown in Fig. 1(a) where two hulls H1 and H2 from
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Fig. 1. Conceptual illustration. Different colors denote different subjects.
(a) Shows a failed case caused by overlarge affine hulls. (b) Illustrates the
training process. The arrows imply the training objective that for a projected
point y, its nearest prototype from different classes nnb (y) leaves away and
the one from the same class nnw (y) approaches near. (c) Depicts the learned
target subspace and prototype sets.

different subjects are overlapped and it leads to a failed match.
For shrinking the affine approximation, later methods attempt
to artificially impose a tighter constraint (such as convex [1],
sparse [10], regularized [11], or probabilistic [12] constraint)
which, however, is a brute-force way and may lead to high time
cost or missing of some representative candidate points. 2) The
discriminative information is ignored. To tackle this problem,
Zhu et al. [13] propose to alternatively optimize a discrimina-
tive metric and nearest affine points, which is hard to solve with
the possibility of trapping in local optimum and high time com-
plexity. A later work [14] extends [13] by iteratively filtering out
outlier samples, which may suffer from information missing and
computational difficulty.

To address these limitations, this letter explores a totally dif-
ferent and novel solution of shrinking the corresponding affine
hull discriminatively. We present a prototype discriminative
learning (PDL) method aiming at learning a set of represen-
tative points (i.e., prototypes) for each image set and a linear
discriminative projection simultaneously. To favorably inherit
the merit of affine hull in revealing unseen appearance varia-
tions, the learned prototypes of an image set are actually “vir-
tual,” that is, they do not certainly appear in the set but are
searched in the corresponding affine hull. Moreover, as shown
in Fig. 1, the training objective is estimated from a local view
of nearest neighbor (NN) to penalize a larger distance between
NN from different classes than that from the same class. This
allows that in the target subspace each image set can be op-
timally classified to the same class with its nearest prototype
set. To further guarantee the stability and robustness of the
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target subspace, the projection is regularized to be orthonormal.
Hence, to optimize the prototypes and the projection jointly, we
design a specific gradient descent algorithm, which updates the
projection on Stiefel manifold and the prototypes in Euclidean
space in an alternative optimization manner. A preliminary con-
ference version has been published in [15], and compared with
it, this letter has made three major extensions.

1) Further improvement for the stability and robustness of
the target subspace.

2) More comprehensive investigation for the main factors.
3) More extensive experiments to evaluate the method and

compare with other state-of-the-art algorithms.
The contributions of the proposed PDL method mainly lie in

the following four aspects.
1) PDL learns the prototypes and a linear discriminative pro-

jection with a joint optimization mechanism.
2) Prototypes are not limited by the existing image samples

but complement the unseen data variations with affine
combinations.

3) PDL is designed focusing on the interclass and intraclass
NN prototypes, which is consistent with NN-based test-
ing, leading to more efficient training and more precise
classification.

4) We study an orthonormal projection constraint to retain
the geometric property favorably and present a specific
gradient descent algorithm.

II. PROTOTYPE DISCRIMINATIVE LEARNING

In this section, we give a detailed formulation of the pro-
posed PDL and introduce the optimization algorithm for jointly
learning the prototypes and the linear projection.

A. Prototype Representation

We start with reviewing the affine hull model [1]. Suppose
there are a total of C image sets for training, the cth one is de-
noted by Xc = {xc,i}nc

i=1 , where xc,i is a d-dimensional feature
vector of the ith image. The cth image set can be approximated
by the affine hull of the sample images:

Hc =

{
x =

nc∑
i=1

αc,i · xc,i

∣∣∣∣∣
nc∑
i=1

αc,i = 1

}
, c = 1, . . . , C.

(1)

By using the sample mean μc = 1
nc

∑nc

i=1 xc,i as a reference,
we can rewrite the affine hull model as follows:

Hc = {x = μc + Ucvc |vc ∈ Rlc }, c = 1, . . . , C (2)

where Uc is an orthonormal basis and obtained by applying
singular value decomposition to the centered data. Since the
directions corresponding to near-zero singular values are dis-
carded, Uc contains lc (lc < nc) singular vectors.

Let P = {P1 , P2 , . . . , PC } be a collection of the prototype
sets to learn. Among them, for the cth image set Xc , the pro-
totype set can be denoted as Pc = {pc,i}mc

i=1 . To make the
learned prototypes more flexible and representative, we pro-
pose to search the prototypes from the corresponding affine
hull, rather than from the existing samples, i.e., Pc ⊆ Hc and
according to (2), we have

pc,i = μc + Ucvc,i , vc,i ∈ Rlc . (3)

B. Loss Function

Besides the prototypes, we also need to learn a linear projec-
tion W to guarantee its discrimination. For each image sample
x ∈ Xc , its projection through W is formulated as follows:

y = WT x ∈ Rr . (4)

Our goal is to drive that for any image in each image set, it is
closer to its NN in any prototype set from the same class than
that from different classes after mapped with W . Therefore, in
reference of the NN error estimation in [16]–[18], we define a
loss function as follows:

J(W,P ) =
C∑

c=1

∑
x∈Xc

Sβ (Qx) (5)

where Sβ (z) = 1
1+eβ ( 1−z ) is a smooth approximation of the step

function when β is large:

Qx =
‖y − nnc

w (y)‖2

‖y − nnc
b(y)‖2

(6)

where nnc
w (y) and nnc

b(y) are the NNs of y respectively from
the projections of the same-class and different-class prototype
sets, and we can formulate them as follows:

nnc
w (y) = WT a, a = argmin

a∈P \Pc ,
a∈Class(x)

∥∥y − WT a
∥∥

2

nnc
b(y) = WT b, b = argmin

b∈P \Pc ,
b /∈Class(x)

∥∥y − WT b
∥∥

2 . (7)

To further facilitate numerical stability and achieve a more
robust target subspace, an orthogonality constraint is imposed
on the projection W , i.e., we need to solve the optimization
problem minW,P J(W,P ) with a constraint WT W = Ir .

C. Optimization

For learning the optimal prototype sets P = {P1 , P2 , . . . ,
PC } and the linear projection W , a gradient descent method is
employed to minimize the loss function J(W,P ). Then we tend
to derive the gradient of loss function J with respect to W and
P . The procedure to search the nearest prototype depends on the
prototype sets and the projection, but it is noncontinuous and
problematic. Thus, a simple approximation is usually exploited
with such dependence ignored [16]. Under such assumption, we
can derive the gradient of J with respect to W approximately
as follows:

∂J

∂Wk
≈

C∑
c=1

∑
x∈Xc

S′
β (Qx)Qx

‖y − nnc
w (y)‖2

2
· (x − a)(yk − nnc

w (y)k )

−
C∑

c=1

∑
x∈Xc

S′
β (Qx)Qx

‖y − nnc
b(y)‖2

2
· (x − b)(yk − nnc

b(y)k ) (8)

where Wk ∈ Rd denote the kth column of W and yk denote the
kth element of vector y.

According to (3), for learning the prototype sets, we
just need to learn the corresponding affine coefficients V =
{V1 , . . . , VC }, Vc = {vc,i}mc

i=1 . Thus, we derive the gradient of
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J with respect to each vector vci as follows:

∂J

∂vci
≈

C∑
c=1

∑
x∈Xc
pc i =a

S′
β (Qx)Qx

‖y − nnc
w (y)‖2

2
· UT

c WWT (a − x)

−
C∑

c=1

∑
x∈Xc
pc i =b

S′
β (Qx)Qx

‖y − nnc
b(y)‖2

2
· UT

c WWT (b − x). (9)

To solve the optimization problem without orthonormal
projection constraint, we can update W and V in an it-
erative procedure based on the derived gradients in the
above-mentioned equation by using limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) [19] to control the step
size. As for the optimization problem with orthonormal projec-
tion constraint, it is nontrivial to jointly optimize W and V as
the feasible set of W is on a Stiefel manifold. Considering its
favorable property of low computational cost, we choose the
curvilinear searching method in [20] to search the step size and
the path of W . Furthermore, to guarantee the optimization of
W and V to be performed jointly and consistently, at each step,
we update W along curvilinear retraction by using [20] and
V along straight lines by using L-BFGS. Although the proof
of convergence is not given for the proposed optimization al-
gorithm, its convergence to a global minimum was confirmed
experimentally in Section III-C.

D. Classification

After the training process, we have computed an optimal
linear projection W and prototype sets P1 , P2 , . . . , PC for the
total of C training image sets. Then given a total of K image
sets as the gallery, we need to give a prediction of the label for
a new test image set. First we optimize the prototype set for
each gallery image set with W fixed by minimizing (5). Then
we compute the projection of these gallery prototype sets and
the test image set through W . Finally, the distance between the
test image set and a gallery image set can be computed as the
minimal distance between samples in the test image set and
prototypes corresponding to the gallery image set. Thus, the test
image set can be classified into the same class of its nearest
gallery set.

III. EXPERIMENTS

A. Databases and Settings

For evaluating our proposed PDL method, we used four chal-
lenging and large-scale databases: YouTube celebrities (YTC)
[21], Chinese Academy of Sciences-OMRON Social Solutions-
Xinjiang University (COX) [22], multiple biometric grand chal-
lenge (MBGC) [23], and point-and-shoot challenge (PaSC) [24].

The YTC database consists of 1910 video sequences belong-
ing to 47 subjects. The face region in each image was resized
into 20 × 20 intensity image, and was processed with histogram
equalization to eliminate lighting effects. Following [2] and
[25], we conducted tenfold cross validation experiments and
randomly selected three clips for training and six for testing
in each fold. The COX database contains 3000 video sequences
from 1000 subjects, which are captured by different camcorders.
The face in each image was resized into 32 × 40 intensity image
and histogram equalized. Similar with the protocol in [5], we
conducted leave-one-out testing.

The MBGC database consists of 143 subjects walking toward
a camera in a variety of illumination conditions, and the number
of videos per subject ranges from 1 to 5. Following the similar
settings in [26], we resized the face images to 100 × 100 and
conducted leave-one-out testing.

The PaSC database consists of 2802 videos of 265 people
carrying out simple actions. Verification experiments were con-
ducted using control or handheld videos as target and query,
respectively. Since the database is relatively difficult, we fol-
lowed [27] to extract the state-of-the-art deep convolutional
neural network (DCNN) features and all comparison methods
are performed based on the DCNN features on PaSC. Here,
the DCNN model was pretrained on the Celebrities on the Web
(CFW) database [28] and subsequently fine-tuned on the train-
ing data of PaSC and COX database by using the Caffe [29].

B. Comparison With the State of the Art

1) Comparative Methods and Parameter Settings: To study
the effectiveness of our proposed PDL method, we com-
pared with several state-of-the-art image set classification
methods, including affine/convex hull based image set dis-
tance (AHISD/CHISD) [1], sparse approximated nearest point
(SANP) [10], regularized nearest points (RNP) [11], dual linear
regression classification (DLRC) [4], pairwise linear regression
classification (PLRC) [7] , and set-to-set distance metric learn-
ing (SSDML) [13].

The source code of all comparative methods released by the
original authors were used except that of DLRC that is carefully
implemented according to [4]. For fair comparison, the impor-
tant parameters of all the methods were carefully tuned follow-
ing the recommendations in the original works: For AHISD, we
retained 95% energy when learning the orthonormal basis. For
CHISD, the error penalty was set to be C = 100 as in [1]. For
SANP, the parameters were the same as [10]. Note that since
the SANP method is too time consuming to run for COX, we
alternately took the image sets of 100 persons rather than all the
1000 persons. For RNP, DLRC, and PLRC, all the parameters
were configured according to [4], [7], [11], respectively. For
SSDML, we set λ1 = 0.001 and λ2 = 0.5, the numbers of the
positive pairs and the negative pairs per set are set to 10 and 20.

For our proposed PDL, we used the Principal Component
Analysis (PCA) projection matrix as an initialization of W .
Considering the varying numbers of images contained in differ-
ent image sets, we did not set a fixed number mc for prototypes
of different image sets but employed the maximal linear patch
(MLP) algorithm in [30] to compute the proper value of mc and a
stable initialization of Pc is accordingly calculated by the centers
of local models. See Section III-C for more detailed experimen-
tal comparison and analysis of different mc . For simplicity, we
denote PDL without orthonormal projection constraint as PDL-
NOP and use PDL-OP to represent PDL when constraining the
projection to be orthonormal.

2) Comparison Results and Analysis: The identification ex-
periments were conducted on YTC, COX, and MBGC. Table I
tabulates the rank-1 identification rates on the three databases,
where each reported rate is a mean accuracy over the multiple-
fold trials. Then we used the PaSC database to evaluate our
performance on the verification task and Table I lists the verifi-
cation rate at a false accept rate of 0.01.

As can be seen in the results, our method performs the best on
all of the four databases. First, our PDL achieves an impressively
better result than the unsupervised affine-hull-based methods,
such as AHISD, CHISD, SANP, RNP, and DLRC. This supports
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TABLE I
COMPARISON WITH THE STATE OF THE ART

Fig. 2. (a) Comparison of different prototype numbers. (b) Effect of different
dimensionalities of the target subspace.

Fig. 3. Convergence of the optimization algorithm on YTC.

the motivation that our PDL improves the affine hull model
by learning prototypes discriminatively and adaptively, which
is more flexible and robust than artificially imposing a tighter
constraint to the geometric structure of affine hull or the selection
criteria of nearest points. Second, our PDL is also superior
over the supervised affine-hull-based method SSDML. It mainly
attributes to our innovation in three aspects.

1) Learning virtual prototypes flexibly and efficiently.
2) Training from a local view of NN.
3) Solving with a joint optimization mechanism.

C. Evaluations of Main Factors

In this section, we conducted further experiments to evaluate
main factors, which may affect the accuracy as well as the
stability of the proposed PDL method.

1) Parameter Comparison: Experiments were performed to
investigate the influence of the main parameters, i.e., the num-
ber of prototypes mc for each image set and the dimension
r of the target subspace. Fig. 2(a) illustrates the accuracy of
PDL-NOP, PDL-OP, and the initial clustering obtained by MLP
[30] according to the average number of prototypes in each set
with r = 100. Note that different image sets may contain dif-
ferent numbers of prototypes and thus the average number of
prototypes is not necessarily integer value. Then as shown in
Fig. 2(b), we explore the effect of different dimensionalities of
the target subspace with the average number of prototypes fixed

Fig. 4. Some examples for the learned prototypes. (a) PDL-NOP. (b) PDL-OP.

TABLE II
TIME COMPARISON (SECONDS) OF DIFFERENT METHODS ON YTC FOR

TRAINING AND TESTING

Method AHISD CHISD SANP RNP DLRC PLRC SSDML PDL-
NOP

PDL-
OP

Training N/A N/A N/A N/A N/A N/A 346.33 75.30 84.00
Testing 1.58 1.71 56.77 1.56 1.91 2.12 2.35 1.15 1.15

to be about 23 and here the curve of MLP is obtained by per-
forming MLP on the projected subspace of PCA. From these
experiments, we can see that the proposed PDL method shows
favorable stability with changing of the prototype number and
the target subspace dimension.

2) Convergence: In Fig. 3, we illustrate the convergence of
the optimization process in PDL-NOP and PDL-OP by taking
the YTC database as an example. We can analyze from the
practice that the values of the loss function both become stable
in less than 100 iterations. From the same initialization, we
experimentally find that PDL-NOP converges faster than PDL-
OP and yet it reaches a suboptimal solution prematurely while
PDL-OP perhaps avoids certain local minimizers with a further
decline to lead to a better and more stable (local) solution.
Besides, Fig. 4 gives some examples of the learned prototypes
in different image sets on YTC.

3) Time Comparison: In addition, we compared the compu-
tational complexity of different methods on an Intel i7-3770,
3.40 GHz PC. Table II lists the time cost of the compara-
tive methods for training and testing respectively on the YTC
database. Note that only supervised methods need the training
time. We can see that since training is performed offline, the
online matching for PDL testing is very efficient and is faster
than other affine-hull-based methods.

IV. CONCLUSION

This letter has proposed a PDL method for image set classifi-
cation. We represented an image set by a prototype set learned
from its affine hull to shrink the loose affine approximation ef-
fectively. Meanwhile, a linear projection was learned to drive
that in the target projected subspace, the learned prototypes can
be used to discriminate image sets of different classes. To en-
hance the stability and robustness of the target subspace, an
orthogonality constraint is further studied to impose on the pro-
jection. Accordingly, a gradient descent algorithm is employed
to solve such optimization problem. Our experimental evalua-
tion has demonstrated the superiority of the proposed PDL on
several challenging databases.
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